Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We report an improved measurement of the valence and quark distributions from the forward-backward asymmetry in the Drell-Yan process using of data collected with the D0 detector in collisions at . This analysis provides the values of new structure parameters that are directly related to the valence up and down quark distributions in the proton. In other experimental results measuring the quark content of the proton, quark contributions are mixed with those from other quark flavors. In this measurement, the and quark contributions are separately extracted by applying a factorization of the QCD and electroweak portions of the forward-backward asymmetry. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available November 1, 2025
-
The chiral magnetic effect (CME) is a phenomenon that arises from the QCD anomaly in the presence of an external magnetic field. The experimental search for its evidence has been one of the key goals of the physics program of the Relativistic Heavy-Ion Collider. The STAR Collaboration has previously presented the results of a blind analysis of isobar collisions ( ) in the search for the CME. The isobar ratio ( ) of CME-sensitive observable, charge separation scaled by elliptic anisotropy, is close to but systematically larger than the inverse multiplicity ratio, the naive background baseline. This indicates the potential existence of a CME signal and the presence of remaining nonflow background due to two- and three-particle correlations, which are different between the isobars. In this postblind analysis, we estimate the contributions from those nonflow correlations as a background baseline to , utilizing the isobar data as well as Heavy Ion Jet Interaction Generator simulations. This baseline is found consistent with the isobar ratio measurement, and an upper limit of 10% at 95% confidence level is extracted for the CME fraction in the charge separation measurement in isobar collisions at GeV. Published by the American Physical Society2024more » « less
An official website of the United States government

Full Text Available